Unsupervised quantification of entity consistency between photos and text in real-world news Thesis
Overview
abstract
- Das World Wide Web und die sozialen Medien übernehmen im heutigen Informationszeitalter eine wichtige Rolle für die Vermittlung von Nachrichten und Informationen. In der Regel werden verschiedene Modalitäten im Sinne der Informationskodierung wie beispielsweise Fotos und Text verwendet, um Nachrichten effektiver zu vermitteln oder Aufmerksamkeit zu erregen. Kommunikations- und Sprachwissenschaftler erforschen das komplexe Zusammenspiel zwischen Modalitäten seit Jahrzehnten und haben unter Anderem untersucht, wie durch die Kombination der Modalitäten zusätzliche Informationen oder eine neue Bedeutungsebene entstehen können. Die Anzahl gemeinsamer Konzepte oder Entitäten (beispielsweise Personen, Orte und Ereignisse) zwischen Fotos und Text stellen einen wichtigen Aspekt für die Bewertung der Gesamtaussage und Bedeutung eines multimodalen Artikels dar. Automatisierte Ansätze zur Quantifizierung von Bild-Text-Beziehungen können für zahlreiche Anwendungen eingesetzt werden. Sie ermöglichen beispielsweise eine effiziente Exploration von Nachrichten, erleichtern die semantische Suche von Multimedia-Inhalten in (Web)-Archiven oder unterstützen menschliche Analysten bei der Evaluierung der Glaubwürdigkeit von Nachrichten. Allerdings gibt es bislang nur wenige Ansätze, die sich mit der Quantifizierung von Beziehungen zwischen Fotos und Text beschäftigen. Diese Ansätze berücksichtigen jedoch nicht explizit die intermodalen Beziehungen von Entitäten, welche eine wichtige Rolle in Nachrichten darstellen, oder basieren auf überwachten multimodalen Deep-Learning-Techniken. Diese überwachten Lernverfahren können ausschließlich die intermodalen Beziehungen von Entitäten detektieren, die in annotierten Trainingsdaten enthalten sind. Um diese Forschungslücke zu schließen, wird in dieser Arbeit ein unüberwachter Ansatz zur Quantifizierung der intermodalen Konsistenz von Entitäten zwischen Fotos und Text in realen multimodalen Nachrichtenartikeln vorgestellt. Im ersten Teil dieser Arbeit werden neuartige Verfahren auf Basis von Deep Learning zur Extrahierung von Informationen aus Fotos vorgestellt, um Ereignisse (Events), Orte, Zeitangaben und Personen automatisch zu erkennen. Diese Verfahren bilden eine wichtige Voraussetzung, um die Beziehungen von Entitäten zwischen Bild und Text zu bewerten. Zunächst wird ein Ansatz zur Ereignisklassifizierung präsentiert, der neuartige Optimierungsfunktionen und Gewichtungsschemata nutzt um Ontologie-Informationen aus einer Wissensdatenbank in ein Deep-Learning-Verfahren zu integrieren. Das Training erfolgt anhand eines neu vorgestellten Datensatzes, der 570.540 Fotos und eine Ontologie mit 148 Ereignistypen enthält. Der Ansatz übertrifft die Ergebnisse von Referenzsystemen die keine strukturierten Ontologie-Informationen verwenden. Weiterhin wird ein DeepLearning-Ansatz zur Schätzung des Aufnahmeortes von Fotos vorgeschlagen, der Kontextinformationen über die Umgebung (Innen-, Stadt-, oder Naturaufnahme) und von Erdpartitionen unterschiedlicher Granularität verwendet. Die vorgeschlagene Lösung übertrifft die bisher besten Ergebnisse von aktuellen Forschungsarbeiten, obwohl diese deutlich mehr Fotos zum Training verwenden. Darüber hinaus stellen wir den ersten Datensatz zur Schätzung des Aufnahmejahres von Fotos vor, der mehr als eine Million Bilder aus den Jahren 1930 bis 1999 umfasst. Dieser Datensatz wird für das Training von zwei Deep-Learning-Ansätzen zur Schätzung des Aufnahmejahres verwendet, welche die Aufgabe als Klassifizierungs- und Regressionsproblem behandeln. Beide Ansätze erzielen sehr gute Ergebnisse und übertreffen Annotationen von menschlichen Probanden. Schließlich wird ein neuartiger Ansatz zur Identifizierung von Personen des öffentlichen Lebens und ihres gemeinsamen Auftretens in Nachrichtenfotos aus der digitalen Bibliothek Internet Archiv präsentiert. Der Ansatz ermöglicht es unstrukturierte Webdaten aus dem Internet Archiv mit Metadaten, beispielsweise zur semantischen Suche, zu erweitern. Experimentelle Ergebnisse haben die Effektivität des zugrundeliegenden Deep-Learning-Ansatzes zur Personenerkennung bestätigt. Im zweiten Teil dieser Arbeit wird ein unüberwachtes System zur Quantifizierung von BildText-Beziehungen in realen Nachrichten vorgestellt. Im Gegensatz zu bisherigen Verfahren liefert es automatisch neuartige Maße der intermodalen Konsistenz für verschiedene Entitätstypen (Personen, Orte und Ereignisse) sowie den Gesamtkontext. Das System ist nicht auf vordefinierte Datensätze angewiesen, und kann daher mit der Vielzahl und Diversität von Entitäten und Themen in Nachrichten umgehen. Zur Extrahierung von Entitäten aus dem Text werden geeignete Methoden der natürlichen Sprachverarbeitung eingesetzt. Examplarbilder für diese Entitäten werden automatisch aus dem Internet beschafft. Die vorgeschlagenen Methoden zur Informationsextraktion aus Fotos werden auf die Nachrichten- und heruntergeladenen Exemplarbilder angewendet, um die intermodale Konsistenz von Entitäten zu quantifizieren. Es werden zwei Aufgaben untersucht um die Qualität des vorgeschlagenen Ansatzes in realen Anwendungen zu bewerten. Experimentelle Ergebnisse für die Dokumentverifikation und die Beschaffung von Nachrichten mit geringer (potenzielle Fehlinformation) oder hoher multimodalen Konsistenz zeigen den Nutzen und das Potenzial des Ansatzes zur Unterstützung menschlicher Analysten bei der Untersuchung von Nachrichten.
authors
status
publication date
- 2022