selected publications
-
academic article
- A Probabilistic Incremental Proximal Gradient Method. IEEE Signal Processing Letters. 26:1257-1261. 2019
- Generalized Multiple Importance Sampling. Statistical Science. 34. 2019
- Multiple Importance Sampling for Efficient Symbol Error Rate Estimation. IEEE Signal Processing Letters. 26:420-424. 2019
- Efficient linear fusion of partial estimators. HAL (Le Centre pour la Communication Scientifique Directe). 2018
- The Recycling Gibbs sampler for efficient learning. Digital Signal Processing. 74:1-13. 2017
-
blog posting
- Accelerating MCMC Algorithms. arXiv (Cornell University). 2018
-
conference paper
- End-to-End Learning of Gaussian Mixture Proposals Using Differentiable Particle Filters and Neural Networks. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 9701-9705. 2024
- Adaptive Gaussian Nested Filter for Parameter Estimation and State Tracking in Dynamical Systems. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 1-5. 2023
- Adaptive importance sampling with scaled Langevin proposal adaptatioń. . 2019
- The Incremental Proximal Method: A Probabilistic Perspective. . 4279-4283. 2018
- Novel weighting and resampling schemes in Population Monte Carlo. HAL (Le Centre pour la Communication Scientifique Directe). 2017
- Group Metropolis Sampling. HAL (Le Centre pour la Communication Scientifique Directe). 2017
- Recycling Gibbs Sampling. HAL (Le Centre pour la Communication Scientifique Directe). 2017
- A new strategy for effective learning in population Monte Carlo sampling. 2014 48th Asilomar Conference on Signals, Systems and Computers. 1540-1544. 2016
-
proceedings
- Recycling Gibbs Sampling. Zenodo (CERN European Organization for Nuclear Research). 2018